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Abstract—The development of appropriate test cases is an important issue for conformance testing of protocol implementations and

other reactive software systems. A number of methods are known for the development of a test suite based on a specification given in

the form of a finite state machine. In practice, the system requirements evolve throughout the lifetime of the system and the

specifications are modified incrementally. In this paper, we adapt four well-known test derivation methods, namely, the HIS, W, Wp,

and UIOv methods, for generating tests that would test only the modified parts of an evolving specification. Some application examples

and experimental results are provided. These results show significant gains when using incremental testing in comparison with

complete testing, especially when the modified part represents less than 20 percent of the whole specification.

Index Terms—Protocol conformance testing, finite state machines, test derivation, incremental testing.
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1 INTRODUCTION

MANY test derivation methods have been developed
for conformance testing of communication protocols

[2], [4], [9], [12], [13], [15]. The purpose of these tests is to
determine whether an implementation of the protocol
conforms to (i.e., is correct with respect to) its specifica-
tion. Usually, a conforming implementation is required to
have the same input/output behavior as defined by the
specification. In various application domains, such as
telecommunication systems, communication protocols,
and other reactive systems, the specification can be
represented in the form of a Finite State Machine
(FSM). Moreover, FSMs are the underlying models for
formal description techniques, such as SDL and UML
State Diagrams. Many test derivation methods have been
developed for deriving tests when the system specifica-
tion is represented by an FSM (for surveys, see [1], [11],
[17], [18], [20] and for related tools and experiments see
[11], [16]). Some well-known methods are called the W
[2], [12]), partial W (Wp) [4], Unique-Input-Output (UIOv)
[13], and HIS [9], [15] test derivation methods. These
methods are applicable to software and hardware systems
as long as the system behavior can be characterized as a
reactive system that provides output responses depending
on the received inputs and the dynamically evolving
system state [5], [19].

In FSM-based testing, one usually assumes that not only

the specification, but also the implementation can be

modeled as an FSM. If the behavior of the implementation
FSM is different than the specified behavior, the imple-
mentation contains a fault. The types of implementation
faults are usually considered, namely, output faults (the
output of a transition is wrong) and transfer faults (the next
state of a transition is wrong) [1], [2], [4], [9], [11], [13], [15].
The test derivation methods mentioned above, each
provides the following fault coverage guarantee: If it is
known that the implementation can be modeled by an FSM
with at most m states (where m is larger or equal to n, the
number of states of the specification), then a test suite can be
derived by the method (for this given m) and the
implementation will only pass this test suite if and only if
it conforms to the specification (that is, it does not contain
any output nor transfer faults). In many cases, one assumes
that m ¼ n.

Certain system or software development processes
foresee that the designers develop the system specification
and implementation incrementally. Moreover, during the
maintenance phase, designers usually change the specifica-
tion of the given system due to changes of the user
requirements or system environment. For instance, a
communication protocol may have to be extended to
incorporate new operations (behaviors) so that new services
can be provided to the users. A possible approach for the
generation of a test suite for the modified (incrementally
developed or changed) specification is to take the modified
specification as a new specification and apply one of the test
generation methods to this new specification. This means
generating test cases that test the whole system implemen-
tation. Another possible approach which we call incremental
testing is to generate tests that would only test the modified
parts of the implementation that correspond to the modified
parts of its specification. This second approach is more
effective and less time consuming, since it does not test the
reused (unmodified) parts of the given system.

In this paper, we present incremental specification-based
test generation methods that produce tests that check that
the modified parts of the system specification are correctly
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implemented in the modified system implementation. Here,
we assume that the parts of the system implementation that
correspond to the unmodified parts of the specification
have not been changed. Moreover, we also reasonably
assume that before modifying the system specification, its
implementation was tested and found to be conforming
to the original specification. The incremental testing
methods proposed in this paper are based on the HIS
method and can be adapted to the W, Wp, and UIOv
methods and provide a similar fault coverage guarantee as
these nonincremental methods. A preliminary version of
the incremental testing methods was presented in [3].

We note that the testing methods considered in this

paper assume that a reset function is available that allows

the reliable reset of the implementation under test. This

implies that the test suite can be composed of a larger

number of individual test cases, each starting with the reset

operation. We note that certain test derivation methods,

such as the Distinguishing Sequence (DS) methods do not

rely on such a reset function [19], [22], [23]. Other test

derivation methods, such as the Transition Tour method

[21] do not provide the same fault coverage guarantee.

These methods are not considered in this paper. However,

our incremental methods are applicable when deriving test

suites with respect to user-defined faults modeled by a fault

function [8] or by a mutation machine [6]. Furthermore, we

expect that our approach to incremental testing could also

be applied in situations where the system specification is

not given in the form of an FSM, but in some other

formalism, for instance Labeled Transition Systems (LTSs),

since testing approaches developed for FSMs can be used

for testing LTSs, as proposed in [9].
This paper is organized as follows: Section 2 defines our

notations for describing finite state machines, and Section 3
includes an overview of the W, Wp, UIOv, and HIS
test derivation methods. Based on the HIS method, our
incremental testing methods are presented in Section 4 with
a few simple examples. In Section 5, we present experi-
mental results obtained with larger example specifications.
Section 6 discusses related research work and Section 7
concludes the paper.

2 FINITE STATE MACHINES

A deterministic finite state machine is an initialized determi-
nistic Mealy machine that can formally be defined as a 7-
tuple M ¼ ðS;X; Y ; �M; �M;DM; s1Þ [5], [9], where S is a
finite set of states, s1 is the initial state, X is a finite set of
input symbols, Y is a finite set of output symbols, �M is a
next state (or transition) function: �M : DM ! S, �M is an
output function: �M : DM ! Y , and DM is the specification
domain of these functions: DM � S �X.

We use as in [4] the notation “ðsi � x=y ! sjÞ” to indicate

that the FSM M at state si responds with an output y and

makes the transition to the state sj when the input x is

applied. State si is said to be the starting state of the

transition, while sj is said to be the ending state of the

transition. If we are not interested in the output, we write

“si � x ! sj” when an input x is applied at state si. FSM M

is said to be completely specified or simply a complete FSM, if

DM ¼ S �X; otherwise, M is a said to be partially specified

or simply a partial FSM. For a complete FSM, we omit the

specification domain DM , i.e., a complete FSM is a 6-tuple

M ¼ ðS;X; Y ; �M; �M; s1Þ. The concatenation of sequences v1
and v2 is the sequence v1:v2. For a given alphabet Z, Z� is

used to denote the set of all finite words over Z. Let V be a

set of words over alphabet Z. The prefix closure of V ,

written PrefPrefðV Þ, consists of all the prefixes of all words

in V , i.e., PrefPrefðV Þ ¼ f�j9�ð�:� 2 V Þg. The set V is prefix-

closed if PrefPrefðV Þ ¼ V .
Let

M ¼ ðS;X; Y ; �M; �M;DM; s1Þ and
I ¼ ðT;X; Y ;�I ;�I ; DI; t1Þ

be two FSMs. In the following sections, M usually

represents a specification while I denotes an implementa-

tion and, thus, FSM I is further assumed to be complete

[2], [4], [5], [9], [12], [13]. Given an input sequence

� ¼ x1 x2::xk 2 X�, � is called a defined input sequence

(DIS) at state si 2 S, if there exist k states si1; si2; . . . ; sik 2 S

such that there is a sequence of specified transitions si �
x1 ! si1:: ! siðk�1Þ � xk ! sik in the finite state machine M.

Hereafter, DISðMjsiÞ will be used to denote the set of all

the defined input sequences at state si of machine M. As

usual, we extend functions �M and �M to input sequences.

Given a state si 2 S and the empty word ", we define

�Mðsi; "Þ ¼ si while �Mðsi; "Þ ¼ ". If an input sequence

�:x 2 DISðMjsiÞ, then �Mðsi; �:xÞ ¼ �Mð�Mðsi; �Þ; xÞ while

�Mðsi; �:xÞ ¼ �Mðsi; �Þ:�Mð�Mðsi; �Þ; xÞ.
We say that two states sj ofM and ti of I are compatible [5] if

DISðMjsjÞ\DISðIjtiÞ¼; or if 8�2 DISðMjsjÞ \DISðIjtiÞ;
it holds that �Mðsj; �Þ ¼ �Iðti; �Þ. Otherwise, we say that
states si and tj are distinguishable. An input sequence � 2
DISðMjsjÞ \DISðIjtiÞ such that �Mðsj; �Þ 6¼ �Iðti; �Þ is said
to distinguish the states sj and ti. If the FSMs happen to be
complete, then the definition of compatible states reduces to
the definition of equivalent states (see, for example, [5]).
Similarly, we define the notion of compatible and distin-
guishable states of an FSM. An FSM is said to be reduced if its
states are pair-wise distinguishable.

3 OVERVIEW OF THE W, Wp, UIOv, AND HIS TEST
DERIVATION METHODS

In this section we give an overview of the W, Wp, UIOv,
and HIS test derivation methods and illustrate the HIS
method with a simple application example.

The Wp, HIS, and UIOv methods are modifications of
the so-called W method. All these methods have two
phases. Tests derived for the first phase check that each
state presented in the specification also exists in the
implementation, while tests derived for the second phase
check all (remaining) transitions of the implementation for
correct output and ending state as defined by the specifica-
tion. For identifying the state during the first phase and for
checking the ending states of the transitions in the second
phase, certain state distinguishing input sequences are
used. The only difference between the above methods is
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how such distinguishing sequences are selected. In the
original W method, a so-called characterization set W (or
simply W set) is used to distinguish the different states of
the specification. The Wp method uses the W set during the
state identification phase (the first phase) while only an
appropriate subset, namely, a corresponding state identi-
fier, is used when checking the ending state of a transition.
In the UIOv method, which is a proper subcase of the Wp
method, the ending state of a transition is identified by the
output obtained in response to a single input sequence.
Such a Unique Input/Output sequence, called UIO, allows
distinguishing the expected ending state from all other
states of the specification. This shortens the resulting test
suite, however, a UIO sequence may not exist for some state
of a given specification FSM. Moreover, a W set also may
not exist for a partially specified specification [14], [15]. In
this case, only the HIS method can be used where a family
of state identifiers [7], [9], [14] is used for state identification
as well as for transition checking.

When using the W, Wp, and HIS methods, we are
required to apply several input sequences at certain states.
Therefore, it is necessary to reach an appropriate state of the
implementation several times during the testing procedure.
For this purpose, all the methods assume that a reset
operation, hereafter written as “r,” has been correctly
implemented which allows a safe return to the initial state
of the implementation. This assumption is considered
reasonable for a large class of implementations, such as
telecommunications software.

In rest of this section, we briefly describe the HIS test
derivation method [9], [15]. The specification is assumed
to be given in the form of a reduced FSM M, while the
Implementation Under Test (IUT) is modeled by a
complete FSM I.

Let ti be a state of I and sj be a state of M. Consider a set
V of input sequences such that V � DISðMjsjÞ. State ti is
said to be equivalent to sj with respect to the set V (written as
ti ffiV sjÞ, if �Iðti; �Þ ¼ �Mðsj; �Þ holds for any � 2 V . In
other words, for each input sequence of V , a behavior of I at
state ti coincides with that of M at state sj. We say that I
conforms to M if and only if t1 ffiDISðMjs1Þ s1, where t1 and s1
are the initial states of I andM, respectively. In other words,
for each input sequence where a behavior of M is defined, I
has the same behavior; one also says that the implementa-
tion is quasi-equivalent to the specification [5], [10], [11].

A set Q of input sequences is called a state cover set of
FSM M if for each state si of S, there is an input sequence
�i 2 Q such that s1 � �i ! si. We further consider prefix-
closed state cover sets, i.e., we include " in Q. If FSM is
connected, i.e., each state is reachable from the initial state,
then a state cover set always exists. We further assume that
the specification FSM M is a connected FSM.1

In order to check that each state and each transition
defined in the specification also exists in the implementa-
tion, the HIS method uses state identification facilities with
certain input/output behaviors that can distinguish the
states of an FSM.

Given a reduced FSM M and a state sj 2 S, a set Wj �
DISðMjsjÞ of defined input sequences is called a state

identifier or a separating set of state sj if for any other state si
there exists �2Wj\DISðMjsiÞ such that �Mðsj; �Þ6¼�Mðsi; �Þ.
We now define a collection of state identifiers with certain
features; such a collection was first introduced in [15] and
was later named a family of harmonized identifiers [7], [9] or a
separating family [14]. A separating family is a collection of
state identifiers Wj; sj 2 S, which satisfy the following
condition:

For any two states sj and si, j 6¼ i, there exist � 2 Wj and
� 2 Wi which have common prefix � such that
� 2 DISðMjsjÞ \DISðMjsiÞ, and �Mðsj; �Þ 6¼ �Mðsi; �Þ.

A separating family exists for any reduced (partial or
complete) machine [14], [15].

Given a reduced specification FSMM ¼ ðS;X; Y ; �M; �M;

DM; s1Þ, jSj ¼ n, and a complete implementation FSM I ¼
ðT;X; Y ;�I ;�I ; t1Þ such that jT j ¼ n, let F ¼ fW1; . . . ;Wng
be a separating family of M.

The HIS has two phases in order to test the conformance
of I to M. Tests of the first, so-called “state identification,”
phase check that each state specified by M also exists in I,
or more formally they establish a one-to-one mapping hS�I :

S ! T by the use of a separating family F . Given a prefix-
closed state cover set Q ¼ f�1; �2; . . . ; �ng of the specifica-
tion FSM, for each state sj 2 S, the state identification phase
comprises the sequences r:�j:Wj.

If the FSM I passes the state identification test sequences,
then there exists a one-to-one mapping hS�I : S ! T such
that for every state sj of M there exists a corresponding
Wj-equivalent state t in I, i.e.,

hS�IðsjÞ ¼ t , sj ffiWj
t: ð1Þ

The second so-called “transition testing” phase, assures that
for each state s 2 S, and input x 2 X that is defined at state
s, the mapping hS�I satisfies the following property:

�Mðs; xÞ¼�IðhS�IðsÞ; xÞ and hS�Ið�Mðs; xÞÞ¼�IðhS�IðsÞ; xÞ:
ð2Þ

Informally, the above property states that, for each defined
transition of M, there exists a corresponding transition in I.
For this purpose, for each sequence �j 2 Q that takes the
specification FSM to appropriate state sj and each x 2 X

that takes the M from state sj to state sk, the transition
testing phase includes the set of sequences r:�j:x:Wk,
where Wk 2 F is a state identifier of the state sk in the
specification FSM.

If FSM I passes the test sequences of both testing phases,
then it is quasi-equivalent to the specification FSM, i.e., is a
conforming implementation. If the specification FSM is
complete then the quasi-equivalence relation reduces to the
equivalence relation, i.e., the specification FSM and a
conforming implementation have the same input/output
behavior.

As an application example of the HIS method, consider
the specification FSM M1

0 shown in Fig. 1, with the inputs
X¼ fa; b; cg and outputs Y ¼ f0; 1g.M1

0 admits Q¼f�1¼ ";

�2 ¼ a; �3 ¼ b; �3 ¼ bcg as a state cover set and W1 ¼ fcag,
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W2 ¼ fc; ag, W3 ¼ fcag, W4 ¼ fc; ag as a separating family
of state identifiers.

Based on the above sets, the state identification phase
yields the test sequences: r:�1:W1 þ r:�2:W2 þ r:�3:W3 þ
r:�4:W4. Moreover, the transition testing phase yields the
test sequences:

r:�1:a:W2 þ r:�1:b:W3 þ r:�1:c:W2 þ r:�2:a:W1

þ r:�2:b:W2 þ r:�2:c:W1 þ r:�3:a:W2 þ r:�3:b:W1

þ r:�3:c:W4 þ r:�4:a:W3 þ r:�4:b:W2 þ r:�4:c:W1:

We replace the �s and Ws in the above sequences by their
corresponding values and then remove, as proposed in [2],
from the obtained set those sequences that are proper
prefixes of other sequences. The total length of the test
sequences thus obtained is 46 input symbols.

4 FSM-BASED INCREMENTAL TESTING METHODS

4.1 Problem Definition

We assume that the original specification of a system is
given in the form of a reduced FSM M ¼ ðS;X; Y ; �M; �M;

DM; s1Þ with state set S, inputs X and outputs Y. We also
assume that a given implementation can be modeled by an
FSM I ¼ ðT;X; Y ;�I ;�I ; t1Þ which is a complete FSM with
state set T and the same inputs and outputs as M. Here, we
assume that jT j ¼ jSj (the case that the implementation has
more states than the specification is discussed in Section 4.5).
We further assume that I has been tested and found to
conform to M, i.e., I is quasi-equivalent to M. Therefore,
there exists a one-to-one mapping hS�I : S ! T such that for
each state s 2 S and input x 2 X that is defined at state s, (2)
holds [14].

Now, we assume that a certain number of modifications
have been applied to M in order to obtain a new modified
system specification, in the following written M 0 ¼ ðS;X;

Y ; �M 0 ; �M 0 ; DM 0 ; s1Þ. This modified specification M 0 (also
assumed to be reduced) may be obtained from M by the
application of the following basic modifications:

1. outputs of some transitions are modified,
2. ending states of some transitions are modified,
3. outputs and ending states of some transitions are

modified,
4. new transitions are added,
5. some transitions are deleted,

6. new states are added, and
7. some states are deleted.

We note that different sets of basic modifications may lead
to the same modified specification; for instance, a modifica-

tion of type 3 can be realized by two modifications of type 1
and 2.

Finally, we assume that an implementation I 0 ¼ ðT;X;

Y ;�I 0 ;�I 0 ; t1Þ has been built and should conform to M 0. We

assume I 0 also has been obtained by modifying the existing
implementation I, that is, we assume that only transitions
corresponding to the modified parts of M 0 have been
changed. In other words, for each unmodified transition

ðsj � x=y ! skÞ of M 0, we assume that the transition
ðhS�IðsjÞ � x=y ! hS�IðskÞÞ in I has not been changed in
the modified implementation I 0.

The problem that we address in this paper is the

generation of a set of test cases, called incremental test
suite, that guarantees that the implementation I 0 conforms
toM 0 if I 0 passes all the tests in the test suite. This means the

incremental test suite provides a fault coverage guarantee
under the assumption that the transitions of the implemen-
tation corresponding to unmodified transitions in the
specification have not been modified.

The incremental testing methods described in this paper

are related to the HIS, W, Wp, and UIOv methods and, like
the latter, have two phases. In the first phase, tests are
selected in order to identify certain states of the modified

specification in the new implementation if this is necessary
to ensure the fault coverage guarantee. In the second phase,
tests are selected to check modified and in some cases also
some unmodified transitions for correct output and correct

ending states.
In the following, we describe the incremental testing

method related to the HIS method. The method includes the
consideration of different cases that depend on the amount

and nature of the modifications that have been applied to
the specification M. In the simplest case, no state identifica-
tion is required and the first testing phase is not required;

this leads to especially short test sequences. In the most
complex situations, the general case described in Section 4.4
applies. In Section 4.5, we discuss how these incremental
methods can be adapted to the W, Wp, and UIOv methods

and how the assumption that the number of states of the
implementation is equal to the number of states of the
specification can be removed.

For convenience, hereafter, we use the input symbols a

and b for unmodified transitions and x and z for modified
ones.

4.2 Case 1: No Need for State Identification

Here, we assume that the ending state sk of each modified
transition of M 0 has a state identifier Wk that does not
traverse modified transitions if applied at sk. Due to this
property of the state identifiers, a sequence that distin-

guishes two states of the initial specification and traverses
only unmodified transitions when applied at these states,
also distinguishes the corresponding states of the modified

implementation I 0. That is, given two states sj of M
0 and t of

I 0, it holds that: sj ffiWj
t , hS�IðsjÞ ¼ t.
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Therefore, if the modified implementation is quasi-
equivalent to the modified specification, the mapping
hS�IðsÞ : S ! T between the initial specification and its
conforming implementation is the only candidate that can
satisfy (1) and (2) for the modified specification and its
implementation. Therefore, we do not need to identify
states of the modified implementation or test unmodified
transitions. Case 1 always holds when only new transitions
(but no new states) are added to the modified specification.

4.2.1 Test Selection: A General Solution

For each modified edge ðsj � x=y ! skÞ, its corresponding
incremental test cases are:

r:�j:x:Wk; where Wk is a state identifier of state sk: ð3Þ

Theorem 1. Given a modified specification M 0 and its
implementation I 0, let fs1; . . . ; skg be the ending states of
the modified transitions such that each state si for i ¼ 1 . . . k,
has a state identifier in the unmodified part of the modified
specification. If I 0 passes the test suite which consists of the
union of the test cases over all modified transitions as given in
Formula (3), then I 0 is quasi-equivalent to M 0.

We omit the proof of Theorem 1 since it is a particular
case of Theorem 2. We mention that, in this case, the set of
state identifiers considered do not have to be a separating
family.

4.2.2 Test Selection: An Optimization

The test suite constructed using the formula (3) may be
shortened if for certain transitions, we use shorter state
identifiers that pass through already tested transitions
rather than those going only through the unmodified part
of the modified specification. In other words, instead of
using state identifiers derived in advance, we iteratively
generate the required identifiers taking into account the
modified transitions that have already been tested. This
shortens the incremental test suite since, when deriving a
new state identifier, we do not have to worry about wrong
implementations that are already detected by previous test
cases. Furthermore, unlike the general solution, the opti-
mized method described below can also be applied when
not all the ending states of the modified transitions have
state identifiers in the unmodified part of M 0. This is due to
the fact, that by incrementally testing transitions we might
be able to generate state identifiers in the unmodified and
already tested (or checked) part for all the ending states of
modified transitions.

For the above purposes, we assume that a linear order
”<” over modified transitions of the specification is given.
This order should satisfy the following property: If �r:z 2 Q
is a prefix of �j 2 Q, where Q is a state cover set of M 0, then
for any two modified transitions ðsr � z ! s1Þ and
ðsj � x ! skÞ, transition ðsr � z ! s1Þ has a lower order
than ðsj � x ! skÞ, written as ðsr � z ! s1Þ < ðsj � x ! skÞ.
In this way, when checking a modified transition, we use
lower order transitions (or already checked transitions) to
generate an identifier of the ending state of the transition to
be checked, such that sequences of this identifier traverse
only unmodified or already checked transitions. In this
section, we illustrate by an example the advantage of using

such a linear order. However, we do not provide an

algorithm for finding an optimal order that provides the

shortest incremental test suite. Nevertheless, we suggest the

following guideline for selecting an order: We first check

the modified transitions that have state identifiers in the

unmodified part. Then, we iteratively check other modified

transitions that have state identifiers in unmodified or

already checked part.
For each modified edge ðsj � x ! skÞ, its corresponding

test cases are formed as in Formula (3). However, as state

identifier Wk for state sk, we use sequences over the part of

M that comprises the unmodified transitions and modified

transitions ðsr�z!s1Þ that satisfy ðsr�z!s1Þ<ðsj�x!skÞ.
In other words, for testing the transition ðsj � x ! skÞ, the
state identifier Wk has sequences that, if applied at state sk,

only traverse unmodified transitions or modified transitions

ðsr � z ! s1Þ < ðsj � x ! skÞ. This allows, when checking a

modified transition, the use of already checked transitions

(of lower order) in order to generate shorter state identifiers.

Theorem 2. Given a modified specification M 0 and its

implementation I 0, such that, for each modified transition

ðsj � x ! skÞ, there exist a state identifier Wk, for the ending

state sk, in the part of M 0 that contains unmodified transitions

and lower order (already checked) transitions, then if I 0 passes

the test suite which consists of the union of the test cases over

all modified transitions as given in Formula (3), then I 0 is

quasi-equivalent to M 0.

A proof of Theorem 2 is given in the Appendix.

4.2.3 An Application Example

As an example for the optimized test selection, we consider

the modified specification FSM M2
0 shown in Fig. 2. FSM

M2
0 has the inputs X ¼ fa; b; cg and the outputs Y ¼ f0; 1g.

The labels of the modified transitions are shown in bold.

Actually, in this example, the general solution of Case 1

cannot be applied since the ending state s1 of the modified

transition ðs4 � a ! s1Þ has no state identifier in the

unmodified part of the specification. However, we observe

that the ending state s2 of several modified transitions has

state identifier W2 ¼ fac; cg in the unmodified part of the

specification M2
0.

We now use the following linear order over modified

transitions
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ðs1 � c ! s2Þ < ðs2 � b ! s2Þ <
ðs3 � b ! s2Þ < ðs3 � a ! s4Þ < ðs4 � a ! s1Þ:

In order to test the modified transition ðs1 � c ! s2Þ, we use
the test sequences r:c:W2. Now, we derive a shorter state
identifier W2

0 ¼ fcg for state s2, using the tested transition
ðs1 � c ! s2Þ. Then, in order to test the modified transitions
ðs2 � b ! s2Þ and ðs3 � b ! s2Þ, the test sequences r:a:b:W2

0

and r:aa:b:W2
0 are used, respectively. Now, we can use the

latter tested transition to derive the state identifier W4 ¼
fb; cg for state s4.

Then, in order to test themodified transition ðs3 � a ! s4Þ,
the test sequences r:aa:a:W4 are used. State s1 now has an
identifier W1 ¼ fa; bg in the machine that contains the
unmodified part of M2

0 and already tested transitions. In
order to test the modified transition ðs4 � a ! s1Þ, the
following sequences are used: r:aaa:a:W1.

The total length of these sequences is 38. The HIS method
generates a test suite of length 84 if the whole specification
of M2

0 is to be tested.

4.3 Case 2: Only Modified Transitions Need to be
Tested

In some cases, the ending states of the modified transitions
have no identifiers in the unmodified part and, thus, we
cannot apply Case 1. However, if all the states of M 0 are
reachable from the initial state through unmodified transi-
tions, then only modified transitions need to be tested.
Moreover, the identification phase of the HIS method can be
reduced. Similar to the previous case, since each state of M 0

can be reached through unmodified transitions, the only
possible correct mapping between the states of M 0 and I 0 is
the old mapping established between the states of M and I.
Therefore, in order to check that this mapping still holds for
the states of the modified specification and implementation,
only the states that have state identifiers passing through
modified transitions have to be identified in the new
implementation. In order to identify such a state, it is
enough to apply only those state identifier sequences that
pass through modified transitions.

4.3.1 General Solution for Case 2

Let Q be a prefix-closed state cover set such that its
sequences do not traverse modified transitions if applied at
the initial state of M 0. Let also F ¼ fW1; . . . ;Wng be a
separating family of the modified specification.

State identification phase. For each state sr such that
some sequences of Wr traverse modified transitions if
applied at sr, the state identification sequences are formed
as follows:

r:�r:Wr
0; ð4Þ

where Wr
0 � Wr comprises each sequence of the state

identifier Wr that, if applied at state sr of the modified
specification, traverses a modified transition. We note that
each state of M 0 for which all sequences of the state
identifier traverse only unmodified transitions, does not
need to be identified.

Transition testing phase. For each modified edge
ðsj � x ! skÞ, its corresponding test sequences are formed
as shown in Formula (3).

Theorem 3. Given the modified specification M 0 and its
implementation I 0, let F ¼ fW1; . . . ;Wng be a separating
family ofM 0. Also, let Q be a prefix-closed state cover set ofM 0

such that all sequences of Q do not traverse any modified
transition if applied at the initial state. If I 0 passes the test suite
which is the union of the test sequences given in Formula (4)
and Formula (3), then I 0 is quasi-equivalent to M 0.

We omit the proof of Theorem 3 since it is a particular
case of Theorem 4.

4.3.2 An Optimized Solution for Case 2

In order to obtain incremental testing sequences that are
shorter than those obtained from the general solution
above, we proceed as follows: When testing a modified
transition ðsi � x=y ! skÞ with an ending state sk, we first
identify state sk from all other states of M 0 (if needed) by
using shorter sequences than those of the general solution
described above. This is done using the following
sequences:

. For state sk, we use sequences:

r:�k:Wk
0; ð5Þ

where �k belongs to the state cover set of M 0, and
Wk

0 � Wk comprises all sequences of the state
identifierWk that, if applied at state sk of themodified
specification, traverse a modified transition.

. For each other state si 6¼ sk, we use sequences:

r:�i:Z; ð6Þ

where �i belongs to the state cover set of M 0, and Z
comprises a prefix of a sequence of Wk \Wi that
distinguishes si from sk and if applied at state si of
the modified specification, traverses a modified
transition.

In the transition testing phase, in order to test the
transition ðsi � x=y ! skÞ, sequences are formed according
to Formula (3) above.

We note here that similar to the general solution of
Case 2, we do not apply sequences of Wk that do not
traverse modified transitions when applied at an appro-
priate state. However, in contrast to the general solution of
Case 2, we may apply only prefixes ofWk that are needed to
distinguish the ending state of a modified transition from
all other states ofM 0. Moreover, we do not distinguish these
states from each other.

Afterwards, we add the tested transition to the unmo-
dified part ofM 0. Consequently, for some transitions, Case 1
might become applicable, and we can use it, instead of
Case 2, if this leads to shorter tests. In order to determine
which case to apply for checking the next transition, we
derive tests according to Formula (3) and according to
Formulas (5) or (6). Then, we use the tests that are shorter.
Moreover, when Case 1 is not applicable or it might lead to
longer tests, we proceed as described in Case 2.

We iteratively use the following theorem, for each
modified transition of M 0:

Theorem 4. Given the modified specification M 0 and its
implementation I 0, let F ¼ fW1; . . . ;Wng be a separating
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family of M 0. Let also Q be a prefix-closed state cover set of M 0

such that all sequences of Q does not traverse any modified
transition if applied at the initial state. If I 0 passes the test
suite which is the union of the test sequences derived as
described above over all modified transitions, then I 0 is quasi-
equivalent to M 0.

A proof of Theorem 4 is given in the Appendix.

4.4 Case 3: The General Case

In some cases, the unmodified part of the modified
specification M 0 is not reduced and some states of M 0 are
only reachable through modified transitions. For instance,
this case always holds when additional states are added to
the original specification. Here, for the subset of states of the
modified specification that are only reachable through
modified transitions, which we call Sr�m, the old state
mapping might not be preserved between the new
specification and its implementation, i.e., some state sk 2
Sr�m of the modified specification might be mapped to a
new state of its implementation (say t1 2 Tr�m), different
from tk [3], [8]. Each such state must be identified in the
new implementation and moreover, different from the
former two cases, we have to check unmodified transitions
from such states [3].

As in the previous section, we select a prefix-closed state
cover set with the following property. Given state sj 2 S of
M 0 reachable through unmodified transitions, we select the
sequence �j 2 Q that does not traverse any modified
transition. Moreover, we apply the Optimized Case 1 if it
is possible for certain transitions.

The incremental testing method has two phases. In the
first phase, some states of the modified specification are
identified in the new implementation. It may occur that for
some states of the modified specification that are only
reachable through modified transitions their old image
must still be preserved in the new implementation. In
particular, those are the states that have a so-called stable
identifier [8] that distinguishes a state from any other state
in each possible implementation. For each such state, we
derive a state identifier (if it exists) that detects, through
the identification phase, implementations where the state
has a new image. We start from the set of states that are
reachable through unmodified transitions. As in Case 2, the
old mapping must still be valid for these states and only
modified transitions from these states need to be checked.
Moreover, if for each such state, the sequences of its state
identifier do not traverse modified transitions then the
state does not need to be identified. Otherwise, we select
state identification sequences using Formula (4) of Case 2,
where in order to check the new mapping of a state sj, we
concatenate the sequence r:�j with each sequence of the
state identifier of the sj that passes through a modified
transition. Then, we iteratively identify all other states for
which the old mapping must be preserved; however, their
state identifiers are derived in a proper way as described
below. Afterwards, since each remaining state sj 2 Sr�m, of
the modified specification could have a new image, i.e., sj
could be mapped to tk 2 Tr�m instead of the old image
hS�IðsjÞ ¼ tj, tests are selected to identify the image of sj in
the new implementation, i.e., to check (or establish) that sj

is Wj-equivalent to tk, and to check that this mapping is
conforming. In order to identify sj, tests are selected by
concatenating r:�j with each sequence in the state identifier
of state sj including sequences which traverse only
unmodified transitions. Moreover, in order to check that
this mapping is a valid one (i.e., to detect wrong
mappings), tests are selected to check each outgoing
transition from sj for correct output and ending state in
the new implementation.

In order to implement the above steps, we determine a
subset Su of the set of states of the modified specification
such that, for the states in Su, the old mapping between the
states of the modified specification and its conforming
modified implementation must still be preserved. The set Su

enjoys a nice property. For each state in Su, we do not need
to check outgoing unmodified transitions from the state. In
the following paragraph, we determine which states may be
in the set Su and derive the set Su together with a separating
family F ¼ fW1; . . . ;Wng so that if the implementation
passes the identification test sequences, then there exists a
one-to-one mapping h : S ! T such that the following
property holds.

For each state si 2 Su, we have:

Si ffiWi t , t ¼ hS�IðsiÞ: ð7Þ

First, we add to the empty set Su each state sj that is
reachable from the initial state through unmodified transi-
tions. As in Case 2, the images of these states have to be still
preserved in the new implementation. Then, for state sj 2
Su and each state si 2 S, si 6¼ sj, we include into the state
identifiers Wj and Wi a sequence that distinguishes the
states sj and si in the modified specification. We note that,
as discussed for Case 2, we recommend, while building the
state identifier Wj, to select the sequences that do not pass
through modified transitions if applied at state sj since we
do not need to apply these sequences while identifying sj.

Afterward, we iteratively include in Su each state
sj 2 SnSu, such that for each state si 2 SnSu; si 6¼ sj, there
exists a sequence �ij that does not traverse modified
transitions if applied at states si and sj and �M

0ðsi; �ijÞ 6¼
�M

0ðsj; �ijÞ, or there exists an input x such that transitions
ðsj � x ! skÞ and ðsi � x ! srÞ are unmodified, sk 6¼ sr and
sk; sr 2 Su. In the former case, we include the sequence �ij in
Wi and Wj. Since �ij does not traverse modified transitions
if applied at states si and sj, we have that �I

0ðhS�IðsiÞ; �ijÞ ¼
�M

0ðsi; �ijÞ and �M
0ðsj; �ijÞ 6¼ �I

0ðhS�IðsiÞ; �ijÞ. Thus, if �ij is
included into Wi andWj and the implementation passes the
corresponding state identification sequences, then sj is not
equivalent to hS�IðsiÞ (i.e., hS�IðsjÞ 6¼ hS�IðsiÞ). In the latter
case, we include into Wi and Wj the sequence x� where � is
a common prefix of the appropriate sequences in Wi andWj

such that �M
0ðsk; �Þ 6¼ �M

0ðsr; �Þ. Thus, if �I
0ðhS�IðsiÞ; x:�Þ¼

�M
0ðsi; x:�Þ, then �M

0ðsj; x:�Þ 6¼ �I
0ðhS�IðsiÞ; x:�Þ. If x:� is

included in Wi and Wj and the implementation passes the
corresponding state identification sequences, then sj is not
equivalent to hS�IðsiÞ. Due to the definition of state
identifiers for states in Su, such a sequence exists. We note
that, in order to detect for sj, any mapping hI where
hIðsjÞ 6¼ hS�IðsjÞ, the corresponding state identification
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sequences are derived by concatenating r:�j with every
sequence of the set Wj.

Finally, we derive state identifiers for the remaining
states in SnSu. For each pair of states sj and si in SnSu,
si 6¼ sj, we include a sequence �ij in Wi and Wj (if it is not
yet included) such that �M

0ðsi; �ijÞ 6¼ �M
0ðsj; �ijÞ. In order to

identify sj in the new implementation and to detect its
possible wrong images, the corresponding testing se-
quences include all identification sequences and sequences
for testing all outgoing transitions from state sj. We note
that in order to reduce the number of transitions which
need to be checked, we use a technique other than that
based on stable state identifiers [8]. The main idea behind
our approach is based on the observation that, for each state
reachable through unmodified transitions and some other
states, the old image must be preserved in each conforming
modified implementation and we select appropriate state
identifiers, for which (7) holds. As we illustrate by the
following example, not each such a state identifier is stable.
Our technique can also be used to reduce a test suite
derived from a mutation machine [6] if the latter has many
deterministic transitions.

State identification phase. For each state sj of the
modified specification that needs to be identified in the new
implementation, we derive its state identification test
sequences as follows:

. If �j does not traverse a modified transition, the
identification sequences are formed as in Formula (4).

. If �j traverses a modified transition then there are
test sequences:

r:�j:Wj: ð8Þ

Every sequence of the set Wj must be applied after �j,
whether the sequence applied at state sj traverses a
modified transition or not.

Transition testing phase. For each modified edge
ðsj � x ! skÞ, where sj 2 Su, its corresponding test cases
are formed as in Formula (3). For each state sj 62 Su,
Formula (3) is applied for each outgoing transition from
state sj including those which are unmodified.

Theorem 5. Given the modified specification M 0 and implemen-
tation I 0, let Q be a prefix-closed state cover set of M 0 and
F ¼ fW1; . . . ;Wng be a separating family of M 0 derived as
described above. If I 0 passes the test suite derived for Case 3,
then I 0 is quasi-equivalent to M 0.

A proof of Theorem 5 is given in the supplementary
material.

4.4.1 An Application Example

As an application example for Case 3, consider the modified
specification M1

0 shown in Fig. 1. The modified transitions
and their labels are shown in bold.

The state cover set of M1
0 is Q ¼ f"; a; b; bcg. In fact,

in this example, the unmodified part of the modified
specification is not reduced, and states s3 and s4 are only
reachable through modified transitions. Therefore, we add
to the initially empty set Su states s1 and s2 since these
states are reachable through unmodified transitions.

Afterwards, in order to distinguish s1 from all other
states of the specification, we include in W1 the symbols a
and b, in W2 the symbol a, and we include the symbol b
in the sets W3 and W1. Moreover, in order to distinguish
state s2 from all other states of the specification, we add
to the sets W3 and W4 the symbol a. Given states s3 and
s4 that are only reachable through modified transitions,
we notice that the sequence ba distinguishes between
these states and does not traverse any modified transition
if applied at these states. Therefore, we add these states
to the set Su and we add the sequence ba to the sets W3

and W4. Consequently, according to Case 3, we do not
have to test the unmodified outgoing transitions from
states s3 and s4, and the state identifiers of M1

0 become
W1 ¼ fa; bg, W2 ¼ fag, W3 ¼ fb; a; bag, and W4 ¼ fba; ag.

According to Case 3, state s1, which is the initial state
and, therefore, reachable through unmodified transitions,
needs to be identified since the symbol b in W1 traverses a
modified transition if applied at s1. The test sequence
r:�1:b ¼ r:":b is selected using Formula (4). Moreover, in
order to identify the states that are only reachable through
modified transitions, i.e., states s3 and s4, the test sequences
r:�3:W3 ¼ r:b:fba; ag, and r:�4:W4 ¼ r:b:c:fba; ag are selected
using Formula (8).

In order to test the modified transitions ðs1 � b=1 ! s3Þ,
ðs3�c=1!s4Þ, and ðs3�a=0!s2Þ, the sequences r:�1:b:W3 ¼
r:b:fba; ag, r:�3:c:W4¼r:b:c:fba; ag, and r:�3:a:W2 ¼ r:b:a:fag
are selected using Formula (3).

Consequently, the incremental test suite has sequences of
a total length 17. The traditional HIS method derives a test
suite of length 46 if the whole specification of M1

0 is
considered for test derivation.

4.5 Adapting the HIS-Based Incremental Testing
Method to the W and Wp Methods

The W method uses a so-called characterization set, often
simply written as W set, of state identifiers as a state
identification facility. For any two states of the reduced
specification FSM, the W set includes a sequence that
distinguishes these states. The difference between the W
and HIS methods is that the former uses the same W set for
identifying all states during the state identification and
transition testing phases, while the HIS method uses
specific sets for each state to be identified. Moreover, we
recall that the Wp method is an improvement over the
W method where in the transition checking phase the
ending state of a transition is identified by a subset of W,
specific to each state to be identified.

The incremental testing method described above in
relation with the HIS method can be easily adapted for
use with the W and Wp methods as follows: In the state
identification phase, each state identifier is replaced by the
W set, and in the transition testing phase, each state
identifier of a separating family that tests the ending state of
a proper transition is replaced by W in the case of the W
method, and by an appropriate subset in the case of the Wp
method. Finally, we recall that the UIOv method is a special
case of the Wp method when UIO sequences exist. Thus the
incremental testing method for the Wp method becomes an
incremental testing method for the UIOv method.
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Similar to the W, Wp, UIOv, and HIS methods, the
incremental testing methods can be adapted for the case
when the number of states m of the implementation is
larger than the number of states n of the specification. As in
the case of the nonincremental testing methods [2], [4], [9],
[12], [13], [15], one can simply append the state cover set
with the set of all input sequences of lengthm� n. As in the
case of the nonincremental testing methods, this leads
unfortunately to very lengthy test suites even for small
values of m� n. It would be interesting to investigate
particular cases when the obtained test suites could be
shortened.

5 TEST SUITE LENGTH: THEORETICAL AND

EXPERIMENTAL RESULTS

For a given reduced FSM M with n states and k input
symbols, the worst-case length of the test suite generated by
the HIS method is of the order Oðkn3Þ for completely
specified FSMs and of the order Oðkn4Þ for partial
specifications [14], [17]. The test suites derived by our
incremental testing method have the same worst-case
length in the case that Case 3 applies. The total length of
the incremental test suite is never longer than the test suite
derived by the corresponding nonincremental method. In
the case that Case 1 or Case 2 applies, the worst-case test
suite length is Oðnum n3Þ for completely specified specifi-
cation FSMs, where num is the number of modified
transitions, which is bounded by 0 < num < nk. This means

that theoretically, in Cases 1 and 2, our incremental tests
could be longer than the test suite derived according to
Case 3. This is due to the fact that we use the nonmodified
part of the specification that is a partial machine for
generating the state cover set and distinguishing sequences.
However, intuitively, it seems that when the number of
modified transitions is small compared to the number of
transitions of the specification FSM, we expect the incre-
mental tests to be shorter than those derived by the HIS
method. This is due to the fact that the number of
transitions to be tested by the incremental methods is
smaller than those to be tested by the HIS method and the
state cover sets and distinguishing sequences of the
modified and original specifications are expected to have
the same length.

In order to get a feeling about the lengths of the
incremental test suites in practical situations, we have
experimented with the optimized solution methods for
Cases 1 and 2 and the method for Case 3 described in
Section 4. Table 1 provides a comparison between the test
suite lengths obtained by the HIS method and by the
incremental testing methods. The comparison is based on
randomly generated completely specified reduced specifi-
cations with a varying number of states (n) and inputs (k).
Although state-oriented specifications of real systems may
have somehow different characteristics than randomly
generated FSMs, we think that the conclusions of Table 1
also apply to system specifications that occur in practice.
Each line in the table corresponds to one randomly

EL-FAKIH ET AL.: FSM-BASED INCREMENTAL CONFORMANCE TESTING METHODS 433

TABLE 1
Experimental Results



generated specification. For each of these specifications,
40 modified specifications were randomly generated by
modifying the output and/or the next state of a certain
fraction of the transitions. Ten modified specifications had
between zero and 5 percent of their transitions modified, 10
had 5 to 10 percent modified, 10 had 10 to 15 percent
modified, and the last 10 had 15 to 20 percent of their
transitions modified. For each of these modified specifica-
tions, we used the applicable case of our testing method to
derive an incremental test suite. Then, we calculated the
average length of the test suites of each group of 10 modified
specifications, as shown in Columns II, IV, VI, and VIII of
Table 1. Moreover, for all generated modified specifications
with n states and k inputs, Column I of Table 1 reports the
average length of the test suites generated using the HIS
method.

The experiments show that when the percentage of
modifications is up to 5 percent, on average, the incremental
test suites are approximately 36 times shorter than the
corresponding HIS test suites. Moreover, these test suites
are on average 11, 6, and 4 times smaller when the
percentages of modifications are up to 10, 15, and 20 percent,
respectively. Moreover, we observe that the ratios of the
lengths of the test suites do not significantly depend on the
size of the specifications; rather, they depend on the
percentage of modifications. We note that in most cases
Case 1 or Case 2 applied, even for the specifications with 15
to 20 percent modified transitions.

6 RELATED WORK

When the specification of a given system is a complete and
reduced FSM, the problem of deriving incremental test
sequences can be converted into the problem of test
derivation from an FSM with a fault function [8] or from
its generalization [6]. In both approaches, each potential
implementation of the given specification is in the set of all
complete and deterministic submachines of a given
nondeterministic FSM that is called a Fault Function (FF)
[8] and a Mutation Machine (MM) in [6]. When a test suite is
derived from an FF or an MM, each modified transition of
an implementation is checked for correct output and next
state. Moreover, as in [6], [8], we show in this paper that
some unmodified transitions need to be checked for correct
next state. In [8], the authors presented two procedures for
test derivation from the FF under the assumption that an
implementation does not have more states than its
specification. Both procedures return a complete test suite
that detects each implementation (i.e., each submachine of
the FF) with a behavior different from that of the
specification. In the first procedure, when checking the
ending state of a transition, the authors show how
distinguishing sequences of a proper subset of states can
be used instead of a complete state identifier. In the second,
the authors proposed (in the so-called advanced procedure)
the notion of a stable state identifier that distinguishes a given
state from all other states of a potential implementation.
Given a state that has a stable state identifier, there is no
need to test unmodified transitions from that state.
However, the question of how to derive such stable
identifiers was left open. In Section 4, we studied the

properties of the states and their distinguishing sequences
and we derived appropriate state identifiers for some of
these states so that we do not need to test their outgoing
unmodified transitions. In fact, our state identifier does not
have to be stable, i.e., it does not have to distinguish the
state from any other state of each possible implementation,
but only from all states of those implementations that are
not yet eliminated by the test cases derived earlier.

Compared to the FF approach [8], the approach
proposed in [6] derives a complete test suite for an
implementation that may have more states than its
specification. The idea behind the approach is based on
the derivation of the product of the specification and the
mutation machines. The reachability analysis for the
product then is performed to determine distinguishing
sequences that test all transitions of a potential implementa-
tion. The authors do not discuss how to select distinguish-
ing sequences in order to return a shorter test suite.
However, in our case, the mutation machine from which
test sequences can be derived is special. Each unmodified
specification transition is a deterministic transition of the
mutation machine while each modified transition becomes
chaotic; that is, each modified transition may lead to any
state with any output. In other words, on the one hand, the
mutation machine has a number of deterministic transitions
that can be used for deriving a test suite, while, on the other
hand, the number of all possible paths that include
modified transitions becomes exponential. For the latter
reason, we propose a more appropriate technique for test
derivation. First, we do not explicitly enumerate all possible
implementation paths under an appropriate input sequence
and, second, we determine which unmodified transitions
do not need testing and we derive appropriate transfer and
distinguishing sequences that allow us not to test these
transitions. For this purpose, we essentially use unmodified
specification transitions that still remain deterministic in the
mutation FSM. Moreover, we derive appropriate identifiers
to check each modified transition for correct output and
ending state and we examine different cases that can be
used to generate short incremental testing sequences. As an
example, we may use distinguishing sequences when
checking certain transitions that pass through already
tested transitions. Finally, unlike the work presented in [8]
and [6], our work is generalized to deal with partial
specifications.

7 CONCLUSION

We have presented incremental test generation methods
that reduce the cost of testing in respect to a modified
system specification by generating tests that only check the
corresponding modified parts of the implementation. The
methods are based on the HIS test derivation method and
can be adapted for the W, Wp, and UIOv methods. A
software tool has been implemented, which was used to
perform experiments that clearly show significant gains in
using incremental testing as compared to complete testing,
when less than 20 percent of the transitions of the original
specifications are modified. Moreover, the smaller the
percentage of modifications, the larger is the gain in the
length of a test suite. Our methods are also applicable when
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deriving test suites with respect to a Fault Function [8] or
Mutation Machine [6]. Moreover, the incremental testing
methods can be adapted for the case when the number of
states of the implementation is larger than the number of
states in the specification.

APPENDIX

PROOF OF THEOREMS 2 and 4

Proof of Theorem 2. Consider hS�IðsÞ : S ! T between M
and I. Given si of M 0, consider its state identifier Wi.
Since the sequences of Wi traverse only unmodified
transitions when applied at si, or already tested modified
transitions, si is Wi-equivalent to state hS�IðsiÞ and is not
Wi-equivalent to any other state of I 0. Therefore, we have
si ffiWi t , t ¼ hS�IðsiÞ. Consequently, it is enough to
show that hS�I possesses the property (2) only for
modified transitions. For modified transitions, we use an
induction over the ordered set fðsr � x ! s1Þiji ¼
1; . . . ;mg of m modified transitions.

Induction basis. By definition of the order “<”, given
the modified transition ðsj � x ! skÞ1, the sequence �j 2
Q does not traverse a modified transition, i.e., the �j

takes the I 0 from the initial state to the state hS�IðsjÞ. The
test suite comprises test cases r:�j:x:Wk where Wk is a
state identifier of state sk in M 0 such that, for each state
si; i 6¼ j, there exist � 2 Wk with the following property:
If sequence � is applied at states sj and si, it does not
traverse modified transitions and

�M 0 ðsk; �Þ 6¼ �M 0 ðsi; �Þ ¼ �M 0 ðhS�IðsiÞ; �ÞÞ:

Therefore, if I 0 passes the test cases r:�j:x:Wk, then
�M 0 ðsj; xÞ ¼ �M 0hS�IðsjÞ; xÞ and the ending state of the
transition ðhS�IðsjÞ � x ! tkÞ is Wk-equivalent to sk, i.e.,
tk ¼ hS�IðskÞ. For each unmodified transition ðsj � a !
s1Þ from state sj, it holds that �M 0 ðsj; aÞ ¼ �M 0 ðhS�IðsjÞ; aÞ
and hS�Iðs1Þ ¼ �M 0 ðhS�IðsjÞ; aÞ.

Induction assumption. For some l < m, we assume
that for each transition ðsj � a ! skÞi with i < l (2) holds.

Induction step. We now show that (2) holds for the
ðlþ 1Þth transition ðsj � x ! skÞ of the ordered set of
modified transitions. By the definition of ”<” and the
induction assumption, the sequence �j 2 Q takes I 0 from
the initial state to the state hS�IðsjÞ. The test suite
comprises test cases r:�j:x:Wk, where Wk is a state
identifier of state sk in the modified specification such
that each sequence of the set Wk applied at state sk
traverses nonmodified transitions or transitions
ðsj � x ! skÞi, i < l. Due to the induction assumption,
(2) holds for each such transition, i.e., Wk is a state
identifier of state hS�IðskÞ in I 0. Therefore, if I 0 passes the
test cases r:�j:x:Wk, then �M 0 ðsj; xÞ ¼ �M 0 ðhS�IðsjÞ; xÞ
and the ending state of the transition ðhS�IðsjÞ � x !
tkÞ is Wk-equivalent to sk, i.e., tk ¼ hS�IðskÞ.

For each nonmodified transition ðsj � a ! s1Þ from
state sj, it again holds that �M 0 ðsj; aÞ ¼ �M 0 ðhS�IðsjÞ; aÞ
and hS�Iðs1Þ ¼ �I 0 ðhS�IðsjÞ; aÞ.

Thus, (2) holds for each transition of M 0 and I 0. In
other words, if I 0 passes the above test sequences it is
equivalent to M 0. tu

In order to prove Theorem 4, it is enough to prove the

following lemma. The statement of the theorem then is

implied by Theorem 2.

Lemma 1. Let there be only one modified transition in M 0, say

sj � x=y ! sk, and the test sequences are generated as

described in Section 4.3.2. If I 0 passes the test sequences, then

I 0 is quasi equivalent to M 0.

Proof of Lemma 1. Consider hS�IðsÞ : S ! T between the M

and I. Since each sequence of Q does not traverse a

modified transition, we have

�I 0 ðt1; �jÞ ¼ hS�Ið�M 0 ðs1; �jÞÞ ¼ hS�IðsjÞ

for each sequence �j 2 Q, i.e., sequences of Q take I 0

from the initial state to n different states such that

�I 0 ðt1; �jÞ ¼ hS�IðsjÞ. If I 0 passes the test cases derived

by formula (5) or formula (6) then the state identifier Wk

is the state identifier of the state hS�IðskÞ in I 0. Therefore,

if I 0 passes the test case �j:x:Wk, then there is the

transition hS�IðsjÞ � x=y ! hS�IðskÞ in I 0. tu
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